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What is abstract interpretation?

A way to prove properties on programs

◮ No undefined behavior

◮ Some specification on output is matched

◮ Maximum execution time, constant execution path

◮ ... any other semantic property you can think of.
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Why? – What happen when software fail

Figure 1: Ariane V, 4th June 1996
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Why? – What happen when software fail

Figure 2: Ariane V, 40s later
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Why? – Cost of software failure

Bugs have various annoying consequences:

◮ Deaths (Patriot MIM-104, Toyota, radiotherapy machines)

◮ A lot of money: Ariane V (payload: $370 · 106), $60 · 109/year in
the US (NIST)

◮ Privacy (Heartbleed)

◮ . . .
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Why? – What we usually do

How developers think they can avoid bugs:

◮ Tests

◮ High level/safe language

◮ Strict code style

Still, Ariane V crashed. . . . "And here, poor fool[s], with all [their] lore,
[they] stand no wiser than before".
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The idea

◮ Check an execution: test, limited.

◮ Check all executions at once: ok, but not computable.

◮ Compute an over-approximation of all executions: sound, not
complete.

Every possible behavior will be in our approximation (but maybe more).
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An example

1 int f(int x)

2 { // x ∈ [−231
; 231 − 1]

3 y = abs(x); // y ∈ [0; 231 − 1] ∨ x = −231

4 z = y + 1; // z ∈ [1; 231 − 1] ∨ y = 231 − 1
5 return 1/z; // 0 6∈ [1; 231 − 1] ⇒OK !

6 }
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Let’s generalize

(D,⊆) a too big set (with good properties): typically, set of memory
environments.

JPK = f1 ◦ · · · ◦ fn

We want that c ⊆ specification holds at every program point.
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Let’s generalize

Abstract domain:

◮ (D♯
,⊆♯): a reasonable set (eg. Z

2
)

◮ γ : D♯ → D : concretization (eg. (a, b) 7→ {x ∈ Z | a 6 x 6 b})

Sound if for all program point, c ⊆ γ(a): we don’t miss any behavior
by executing in the abstract (but we lose precision).

Sound abstract operator: fi ◦ γ ⊆ γ ◦ f ♯
i
.

And we want γ(a) ⊆ specification.
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Let’s generalize

J×2K ◦ γ γ ◦ J×2K♯

[−1; 1]
γ ↓

{−1, 0, 1}
×2
−→ {−2, 0, 2}

[−1; 1]
(×2)♯
−−−→ [−2; 2]

↓ γ

{−2,−1, 0, 1, 2}

We have every possible result by executing in the abstract.
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In everyday life

Every way to infer some property about a system without knowing
everything:

◮ Rule of signs for multiplication:

× + -
+ + -
- - +

◮ Vote counting
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The incompleteness

1 /*@ requires -10 <= x <= 10; */

2 int g(int x)

3 { // x ∈ [−10, 10]
4 int y = x; // y ∈ [−10, 10]
5 int z = x * y;

6 /* z ∈ Interval({a× b | a ∈ [−10, 10], b ∈ [−10, 10]})
7 z ∈ [−100, 100]
8 */

9 int t = z + 1; // t ∈ [−99, 101]
10 return 1/t; // 0 ∈ [−99, 101] ⇒ Alarm!

11 }

But this program is clearly safe.
What happens? This abstract domain cannot understand the relation
between x and y.
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In completeness in everyday life

Sometimes our partial knowledge is not enough:

◮ Rule of signs for addition:

+ + -
+ + ?
- ? -

◮ Vote counting without absolute majority
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Other domains

◮ Numerical:
Non relational:
◮ Modulo: xi ≡ ci [ni ]
◮ Bitwise: xi = 0?1??100010111????

◮ Sign: xi < 0, xi > 0, xi 6 0 . . .

Relational:
◮ Polytope: ∑ aixi 6 ci

◮ Octagon: ±xi ± xj 6 ci

And combination of domains.

◮ Memory: some value points to another, memory structures,
separation logic. . . .

◮ Partitioning: (x > 0 ⇒ ...) ∧ (x 6 0 ⇒ ...)

◮ All ad hoc domain you need.
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The problem of loops – 1st iteration

1 int i = 0; // i ∈ [0, 0]
2 while(i < 1000) { // i ∈ [0, 0]
3 i = i + 1; // i ∈ [1, 1]
4 }
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The problem of loops – 2nd iteration

1 int i = 0; // i ∈ [0, 0]
2 while(i < 1000) { // i ∈ [0, 0] ∪♯ [1, 1] = [0, 1]
3 i = i + 1; // i ∈ [1, 2]
4 }

21 / 31



Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

Building an analyzer

The problem of loops

The solution: the widening

Interval widening

Discussion

Past and future

The problem of loops – 3rd iteration

1 int i = 0; // i ∈ [0, 0]
2 while(i < 1000) { // i ∈ [0, 1] ∪♯ [1, 2] = [0, 2]
3 i = i + 1; // i ∈ [1, 3]
4 }
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The problem of loops – 1000th iteration

1 int i = 0; // i ∈ [0, 0]
2 while(i < 1000) { // i ∈ [0, 999]
3 i = i + 1; // i ∈ [1, 1000] = [1, 999]∪♯ [1000, 1000]
4 } // i ∈ [1000, 1000]

Urgh! So long!

And what if a loop is really long? Or does not terminate?
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The solution: the widening

Instead of using the abstract union (∪♯), we use a widening (∇).

◮ sound: ∀(a, b) ∈ D♯2
,γ(a) ∪ γ(b) ⊆ γ(a∇b)

◮ termination: for all top0 ∈ D♯ and f ♯ : D♯ → D♯, the sequence

topn+1 = topn∇f ♯(topn)

is stationary.
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Interval widening

Drop unstable constrains:

[a, b]∇[c, d ] =

[{

a if a 6 c

−∞ otherwise
,

{

b if b > d

+∞ otherwise

]
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1 int i = 0;

2 while(i < 1000) { // i ∈ [0, 0]
3 i = i + 1; // i ∈ [1, 1]
4 }
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Interval widening – 2nd iteration

1 int i = 0;

2 while(i < 1000) { // i ∈ [0, 0]∇[1, 1] = [0,+∞]
3 i = i + 1; // i ∈ [1,+∞] = [1, 999] ∪♯ [1000,+∞]
4 } // i ∈ [1000,+∞]
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Discussion

We can add thresholds (e.g. constants ±1). No widening at some
iteration. . . .

Trade-off: convergence speed vs. precision.

We can still refine the invariant a posteriori.
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Abstract interpretation vs. the world

Good things:

◮ Works on existing code

◮ It really works: Astrée (A340, A380)

◮ Quite automatic (when you have the suited domains)

◮ The developer who knows its code can help the analyzer easily

Bad things:

◮ Incompleteness

◮ A lot of work if existing domains are not powerful enough

◮ Some properties are very difficult to prove with this method
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Study case: the OS of an host platform in planes at the border between
trusted (flight control) and untrusted (potentially hostile) world.

We want to prove some security properties: memory isolation, hosted
applications don’t get more privileges. . . .

Properties are not visible from C (about CPU state, mainly): inline
assembly ⇒ analyze assembly. Impacts everything.
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