Verification of
programs by abstract
interpretation

Marc Chevalier

Verification of programs by abstract
interpretation

Marc Chevalier

May 28, 2019

1/31

What? Why?

Ok, but how?

Building an analyzer

Past and future

2/31

What? Why?

Ok, but how?

Building an analyzer

Past and future

3/31

Verification of

wegams by abswaee V't is abstract interpretation?

interpretation

Marc Chevalier

What is abstract interpretation?

A way to prove properties on programs
» No undefined behavior
» Some specification on output is matched
» Maximum execution time, constant execution path

» ... any other semantic property you can think of.

4/31

Verification of

wegeme iy bwsce . \Nhy? — What happen when software fail

Marc Chevalier

What? Why?
What is abstract interpretation?
Why?

Ok, but how?
Building an analyzer

Past and future

Ariane V, 4th June 1996

5/31

Verification of

interpretation

wograms by sk \\/y? — \What happen when software fail

Marc Chevalier

What is abstract interpretation?
Why?

)

F . ’/. | .
e ")

Figure 2: Ariane V, 40s later

6/31

Verification of

ograms by sk \\/y 7 — Cost of software failure

interpretation

Marc Chevalier

Why?

Bugs have various annoying consequences:
» Deaths (Patriot MIM-104, Toyota, radiotherapy machines)

» A lot of money: Ariane V (payload: $370 - 10°), $60 - 10°/year in
the US (NIST)

» Privacy (Heartbleed)
> ..

7/31

Verification of
programs by abstract
interpretation

Marc Chevalier

Why?

Why? — What we usually do

How developers think they can avoid bugs:
» Tests
» High level/safe language
» Strict code style

Still, Ariane V crashed. ... "And here, poor fool[s], with all [their] lore,

[they] stand no wiser than before".

8/31

What? Why?

Ok, but how?

Building an analyzer

Past and future

9/31

Verification of .
programs by abstract T h e I d ea

interpretation

Marc Chevalier

The idea

» Check an execution: test, limited.
» Check all executions at once: ok, but not computable.

» Compute an over-approximation of all executions: sound, not
complete.

Every possible behavior will be in our approximation (but maybe more).

10/31

Verification of

programs by abstract A n eXa m p | e

interpretation

Marc Chevalier

1 int f(int x)

: o // x € [-231:231 1]

3 y = abs(x); // yc 0,23t —1]Vvx= 23
s z=y+1; //ze[;2 —1]vy=23_-1
5 return 1/z; // 0¢ [1;23 —1] =0k !

6

11/31

Verification of
programs by abstract
interpretation

Marc Chevalier

Let's generalize

Let's generalize

(D, C) a too big set (with good properties): typically, set of memory
environments.

[P]=fio---of,

We want that ¢ C specification holds at every program point.

12/31

Verification of

programs by abstract I_et'S genera | IZe

interpretation
Marc Chevalier

Abstract domain:
> (D% C%): a reasonable set (eg. Z2)
» 7 : D! — D : concretization (eg. (a,b) — {x € Z|a < x < b})

Sound if for all program point, ¢ C (a): we don't miss any behavior
by executing in the abstract (but we lose precision).

Sound abstract operator: ffoy C yo f,.ﬁ.

And we want y(a) C specification.

13/31

Verification of
programs by abstract
interpretation

Marc Chevalier

Let's generalize

[x2] oy o [x2]*
[—1;1] g (X2 _».
- 11 2 [¢23y2]
{(-1,0,1} 2% {-2,0,2} {=2,-1,0,1,2}

We have every possible result by executing in the abstract.

14/31

wogams oy ameace |11 everyday life

interpretation

Marc Chevalier

Every way to infer some property about a system without knowing
i veryda Ife everything:
x|+ -
» Rule of signs for multiplication: + | + | -
IR

» \ote counting

15/31

Verification of
programs by abstract
interpretation

Marc Chevalier

The idea

An example
Let's generalize
In everyday life

The incompleteness

In completeness in everyday life

Other domains

The incompleteness

10

11

/*@ requires -10 <= x <= 10; */
int g(int x)

{

3

int y = x;
int z

*/

X % y;
/* z € Interval({a x b|a € [—10,10], b € [-10,10]})
z € [~100, 100]

// x € [~10,10]
// y € [-10, 10]

int t =z + 1; // t€[-99 101]

return 1/t;

// 0€[-99,101] = Alarm!

But this program is clearly safe.

What happens? This abstract domain cannot understand the relation

between x and y.

16 /31

Verification of
programs by abstract
interpretation

Marc Chevalier

In completeness in everyday life

In completeness in everyday life

Sometimes our partial knowledge is not enough:

+ | +
» Rule of signs for addition: + | + | 7
R 2

» \ote counting without absolute majority

17/31

Verification of
programs by abstract
interpretation

Marc Chevalier

Other domains

Other domains

» Numerical:

Non relational:
» Modulo: x; = ¢i[nj]
> Bitwise: x; = 0?71??100010111???7?
> Sign: x; <0, x,>0, x,<0...
Relational:
» Polytope: Y a;jx; < ¢
» Octagon: £x; £x; < ¢
And combination of domains.

» Memory: some value points to another, memory structures,

separation logic. . ..

» Partitioning: (x >0= .)A(x<0=..)
» All ad hoc domain you need.

18/31

What? Why?

Ok, but how?

Building an analyzer

Past and future

19/31

Verification of
programs by abstract
interpretation

Marc Chevalier

The problem of loops

The solution: the widening

The problem of loops — 1% iteration

1

int i = 0;
while(i < 1000) { // i€ |

¥

i=1+1;

// i€ |

// i€ |

0,0
0,0
1,1

]
]
]

20/31

Verification of
programs by abstract
interpretation

Marc Chevalier

The problem of loops

The solution: the widening

The problem of loops — 2™ iteration

1

int i = 0;
while(i < 1000) { // i€ |

¥

i=1+1;

// i€ |

// i€ |

0,0
0,0
1,2

|
JU[1,1) = [0.1

]

21/31

Verification of
programs by abstract
interpretation

Marc Chevalier

The problem of loops
The solution: the widening
Interval | widening

The problem of loops —

1

int i = 0;
while(i < 1000) { // i€ |

¥

i=1+1;

// i€ |

// i€ |

0,0
0,1
1,3

]

JUF[L,

]

3 iteration

2] =

[0, 2]

22/31

Verification of
programs by abstract
interpretation

Marc Chevalier

The problem of loops
The solution: the widening
Interval | widening

The problem of loops — 1000t iteration

1 int 1 = 0; // i €]0,0]

» while(i < 1000) { // i€ [0,999]

. i=1i+1; //i€[l1,1000] = [1,999] U [1000, 1000]
.} // i € [1000, 1000]

Urgh! So long!

And what if a loop is really long? Or does not terminate?

23/31

Verification of

programs by abstract The Solutlon the Wldenlng

interpretation

Marc Chevalier

Instead of using the abstract union (U?), we use a widening (V).

> sound: ¥(a, b) € D¥°, y(a) Uy(b) C v(aVh)
» termination: for all topy € D¥ and f* : D¥ — D, the sequence

topp+1 = top,,Vfﬁ(tOp,,)

is stationary.

24/31

Verification of
programs by abstract
interpretation

Marc Chevalier

Interval widening

Interval widening

Drop unstable constrains:

(2, b]V[c, d] = Ha

— 00

ifa<c

otherwise '

{

b
—+oo

ifb>d

otherwise

|

25 /31

Verification of

wozrams oy abssee |Nterval widening — 1% iteration

interpretation

Marc Chevalier

The problem of loops

1 int i = 0;

» while(i < 1000) { // i€ [0,0]
3 i=1+1; /7 i€ 1,1]
s}

26 /31

wnmeb s Interval widening — 2™ iteration

interpretation

Marc Chevalier

The problem of loops

The sslution: the widening 1 int 1 = 0;

—— » while(i < 1000) { // i € [0,0]V[1,1] = [0, +o0]
3 i=1d+1; // i € [1,4o00] = [1,999] U* [1000, +c0]
¢} // i € [1000, +00]

27/31

Verification of

programs by abstract DISCUSSIOn

interpretation

Marc Chevalier

We can add thresholds (e.g. constants +1). No widening at some
iteration. . ..

Discussion

Trade-off: convergence speed vs. precision.

We can still refine the invariant a posteriori.

28 /31

What? Why?

Ok, but how?

Building an analyzer

Past and future

20/31

Verification of

mograms by absce ADStract interpretation vs. the world

interpretation

Marc Chevalier

Good things:
» Works on existing code
» It really works: Astrée (A340, A380)
G » Quite automatic (when you have the suited domains)

» The developer who knows its code can help the analyzer easily

Bad things:
» Incompleteness
» A lot of work if existing domains are not powerful enough

» Some properties are very difficult to prove with this method

30/31

Verification of
programs by abstract I\/l y WO r k

interpretation

Marc Chevalier

Study case: the OS of an host platform in planes at the border between
trusted (flight control) and untrusted (potentially hostile) world.

My work

We want to prove some security properties: memory isolation, hosted
applications don't get more privileges. ...

Properties are not visible from C (about CPU state, mainly): inline
assembly = analyze assembly. Impacts everything.

31/31

