
Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

Building an analyzer

Past and future

Verification of programs by abstract

interpretation

Marc Chevalier

May 28, 2019

1 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

Building an analyzer

Past and future

What? Why?

Ok, but how?

Building an analyzer

Past and future

2 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

What is abstract interpretation?

Why?

Ok, but how?

Building an analyzer

Past and future

What? Why?

Ok, but how?

Building an analyzer

Past and future

3 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

What is abstract interpretation?

Why?

Ok, but how?

Building an analyzer

Past and future

What is abstract interpretation?

A way to prove properties on programs

◮ No undefined behavior

◮ Some specification on output is matched

◮ Maximum execution time, constant execution path

◮ ... any other semantic property you can think of.

4 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

What is abstract interpretation?

Why?

Ok, but how?

Building an analyzer

Past and future

Why? – What happen when software fail

Figure 1: Ariane V, 4th June 1996

5 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

What is abstract interpretation?

Why?

Ok, but how?

Building an analyzer

Past and future

Why? – What happen when software fail

Figure 2: Ariane V, 40s later

6 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

What is abstract interpretation?

Why?

Ok, but how?

Building an analyzer

Past and future

Why? – Cost of software failure

Bugs have various annoying consequences:

◮ Deaths (Patriot MIM-104, Toyota, radiotherapy machines)

◮ A lot of money: Ariane V (payload: $370 · 106), $60 · 109/year in
the US (NIST)

◮ Privacy (Heartbleed)

◮ . . .

7 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

What is abstract interpretation?

Why?

Ok, but how?

Building an analyzer

Past and future

Why? – What we usually do

How developers think they can avoid bugs:

◮ Tests

◮ High level/safe language

◮ Strict code style

Still, Ariane V crashed. . . . "And here, poor fool[s], with all [their] lore,
[they] stand no wiser than before".

8 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

The idea

An example

Let’s generalize

In everyday life

The incompleteness

In completeness in everyday life

Other domains

Building an analyzer

Past and future

What? Why?

Ok, but how?

Building an analyzer

Past and future

9 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

The idea

An example

Let’s generalize

In everyday life

The incompleteness

In completeness in everyday life

Other domains

Building an analyzer

Past and future

The idea

◮ Check an execution: test, limited.

◮ Check all executions at once: ok, but not computable.

◮ Compute an over-approximation of all executions: sound, not
complete.

Every possible behavior will be in our approximation (but maybe more).

10 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

The idea

An example

Let’s generalize

In everyday life

The incompleteness

In completeness in everyday life

Other domains

Building an analyzer

Past and future

An example

1 int f(int x)

2 { // x ∈ [−231
; 231 − 1]

3 y = abs(x); // y ∈ [0; 231 − 1] ∨ x = −231

4 z = y + 1; // z ∈ [1; 231 − 1] ∨ y = 231 − 1
5 return 1/z; // 0 6∈ [1; 231 − 1] ⇒OK !

6 }

11 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

The idea

An example

Let’s generalize

In everyday life

The incompleteness

In completeness in everyday life

Other domains

Building an analyzer

Past and future

Let’s generalize

(D,⊆) a too big set (with good properties): typically, set of memory
environments.

JPK = f1 ◦ · · · ◦ fn

We want that c ⊆ specification holds at every program point.

12 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

The idea

An example

Let’s generalize

In everyday life

The incompleteness

In completeness in everyday life

Other domains

Building an analyzer

Past and future

Let’s generalize

Abstract domain:

◮ (D♯
,⊆♯): a reasonable set (eg. Z

2
)

◮ γ : D♯ → D : concretization (eg. (a, b) 7→ {x ∈ Z | a 6 x 6 b})

Sound if for all program point, c ⊆ γ(a): we don’t miss any behavior
by executing in the abstract (but we lose precision).

Sound abstract operator: fi ◦ γ ⊆ γ ◦ f ♯
i
.

And we want γ(a) ⊆ specification.

13 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

The idea

An example

Let’s generalize

In everyday life

The incompleteness

In completeness in everyday life

Other domains

Building an analyzer

Past and future

Let’s generalize

J×2K ◦ γ γ ◦ J×2K♯

[−1; 1]
γ ↓

{−1, 0, 1}
×2
−→ {−2, 0, 2}

[−1; 1]
(×2)♯
−−−→ [−2; 2]

↓ γ

{−2,−1, 0, 1, 2}

We have every possible result by executing in the abstract.

14 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

The idea

An example

Let’s generalize

In everyday life

The incompleteness

In completeness in everyday life

Other domains

Building an analyzer

Past and future

In everyday life

Every way to infer some property about a system without knowing
everything:

◮ Rule of signs for multiplication:

× + -
+ + -
- - +

◮ Vote counting

15 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

The idea

An example

Let’s generalize

In everyday life

The incompleteness

In completeness in everyday life

Other domains

Building an analyzer

Past and future

The incompleteness

1 /*@ requires -10 <= x <= 10; */

2 int g(int x)

3 { // x ∈ [−10, 10]
4 int y = x; // y ∈ [−10, 10]
5 int z = x * y;

6 /* z ∈ Interval({a× b | a ∈ [−10, 10], b ∈ [−10, 10]})
7 z ∈ [−100, 100]
8 */

9 int t = z + 1; // t ∈ [−99, 101]
10 return 1/t; // 0 ∈ [−99, 101] ⇒ Alarm!

11 }

But this program is clearly safe.
What happens? This abstract domain cannot understand the relation
between x and y.

16 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

The idea

An example

Let’s generalize

In everyday life

The incompleteness

In completeness in everyday life

Other domains

Building an analyzer

Past and future

In completeness in everyday life

Sometimes our partial knowledge is not enough:

◮ Rule of signs for addition:

+ + -
+ + ?
- ? -

◮ Vote counting without absolute majority

17 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

The idea

An example

Let’s generalize

In everyday life

The incompleteness

In completeness in everyday life

Other domains

Building an analyzer

Past and future

Other domains

◮ Numerical:
Non relational:
◮ Modulo: xi ≡ ci [ni]
◮ Bitwise: xi = 0?1??100010111????

◮ Sign: xi < 0, xi > 0, xi 6 0 . . .

Relational:
◮ Polytope: ∑ aixi 6 ci

◮ Octagon: ±xi ± xj 6 ci

And combination of domains.

◮ Memory: some value points to another, memory structures,
separation logic. . . .

◮ Partitioning: (x > 0 ⇒ ...) ∧ (x 6 0 ⇒ ...)

◮ All ad hoc domain you need.

18 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

Building an analyzer

The problem of loops

The solution: the widening

Interval widening

Discussion

Past and future

What? Why?

Ok, but how?

Building an analyzer

Past and future

19 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

Building an analyzer

The problem of loops

The solution: the widening

Interval widening

Discussion

Past and future

The problem of loops – 1st iteration

1 int i = 0; // i ∈ [0, 0]
2 while(i < 1000) { // i ∈ [0, 0]
3 i = i + 1; // i ∈ [1, 1]
4 }

20 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

Building an analyzer

The problem of loops

The solution: the widening

Interval widening

Discussion

Past and future

The problem of loops – 2nd iteration

1 int i = 0; // i ∈ [0, 0]
2 while(i < 1000) { // i ∈ [0, 0] ∪♯ [1, 1] = [0, 1]
3 i = i + 1; // i ∈ [1, 2]
4 }

21 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

Building an analyzer

The problem of loops

The solution: the widening

Interval widening

Discussion

Past and future

The problem of loops – 3rd iteration

1 int i = 0; // i ∈ [0, 0]
2 while(i < 1000) { // i ∈ [0, 1] ∪♯ [1, 2] = [0, 2]
3 i = i + 1; // i ∈ [1, 3]
4 }

22 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

Building an analyzer

The problem of loops

The solution: the widening

Interval widening

Discussion

Past and future

The problem of loops – 1000th iteration

1 int i = 0; // i ∈ [0, 0]
2 while(i < 1000) { // i ∈ [0, 999]
3 i = i + 1; // i ∈ [1, 1000] = [1, 999]∪♯ [1000, 1000]
4 } // i ∈ [1000, 1000]

Urgh! So long!

And what if a loop is really long? Or does not terminate?

23 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

Building an analyzer

The problem of loops

The solution: the widening

Interval widening

Discussion

Past and future

The solution: the widening

Instead of using the abstract union (∪♯), we use a widening (∇).

◮ sound: ∀(a, b) ∈ D♯2
,γ(a) ∪ γ(b) ⊆ γ(a∇b)

◮ termination: for all top0 ∈ D♯ and f ♯ : D♯ → D♯, the sequence

topn+1 = topn∇f ♯(topn)

is stationary.

24 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

Building an analyzer

The problem of loops

The solution: the widening

Interval widening

Discussion

Past and future

Interval widening

Drop unstable constrains:

[a, b]∇[c, d] =

[{

a if a 6 c

−∞ otherwise
,

{

b if b > d

+∞ otherwise

]

25 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

Building an analyzer

The problem of loops

The solution: the widening

Interval widening

Discussion

Past and future

Interval widening – 1st iteration

1 int i = 0;

2 while(i < 1000) { // i ∈ [0, 0]
3 i = i + 1; // i ∈ [1, 1]
4 }

26 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

Building an analyzer

The problem of loops

The solution: the widening

Interval widening

Discussion

Past and future

Interval widening – 2nd iteration

1 int i = 0;

2 while(i < 1000) { // i ∈ [0, 0]∇[1, 1] = [0,+∞]
3 i = i + 1; // i ∈ [1,+∞] = [1, 999] ∪♯ [1000,+∞]
4 } // i ∈ [1000,+∞]

27 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

Building an analyzer

The problem of loops

The solution: the widening

Interval widening

Discussion

Past and future

Discussion

We can add thresholds (e.g. constants ±1). No widening at some
iteration. . . .

Trade-off: convergence speed vs. precision.

We can still refine the invariant a posteriori.

28 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

Building an analyzer

Past and future

Abstract interpretation vs. the
world

My work

What? Why?

Ok, but how?

Building an analyzer

Past and future

29 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

Building an analyzer

Past and future

Abstract interpretation vs. the
world

My work

Abstract interpretation vs. the world

Good things:

◮ Works on existing code

◮ It really works: Astrée (A340, A380)

◮ Quite automatic (when you have the suited domains)

◮ The developer who knows its code can help the analyzer easily

Bad things:

◮ Incompleteness

◮ A lot of work if existing domains are not powerful enough

◮ Some properties are very difficult to prove with this method

30 / 31

Verification of
programs by abstract

interpretation

Marc Chevalier

What? Why?

Ok, but how?

Building an analyzer

Past and future

Abstract interpretation vs. the
world

My work

My work

Study case: the OS of an host platform in planes at the border between
trusted (flight control) and untrusted (potentially hostile) world.

We want to prove some security properties: memory isolation, hosted
applications don’t get more privileges. . . .

Properties are not visible from C (about CPU state, mainly): inline
assembly ⇒ analyze assembly. Impacts everything.

31 / 31

